
Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 6, Issue 7, July (2016)

ISSN: 2395-5317 ©EverScience Publications 39

A New Model to Reduce Testing Efforts

Moniya

M.Tech Student, SPGOI College of Engineering, MD University, Rohtak (India).

Abstract – Software Testing has played an increasingly important

role in systems acquisition, engineering and development,

particularly for large, complex systems. Underestimating the costs

may result in management approving proposed systems that then

exceed their budgets, with under developed functions and poor

quality, and failure to complete on time. Over estimating may

result in too many resources committed to the projects or during

contract bidding, result is not winning the contract, which can

lead to loss of jobs. Testing effort is often a major cost factor

during software development. Many software organizations are

spending up to 40% of their resources on testing [1]. Therefore,

an existing open problem is how to reduce testing effort without

affecting the quality level of the final software. Thus to provide

solution to the problem here I have defined a new model that can

be helpful in reducing testing effort.

Index Terms – Testing, Cost & Size.

1. INTRODUCTION

Testing is an activity that is carried out in software

development to ensure quality. It is an attempt to find and

remove errors that may have been introduced during software

development and maintenance [2]. Carrying out testing may

not prove the absence of errors therefore the two primary

reasons for carrying out testing may be to locate and fish-out

defects so the customer do not receive a flawed product

secondly is to prove to the customer that the system satisfies all

requirements according to the customer’s expectation [3].In

fact testing is so important that test teams are allocated solely

for testing in companies [4]. There are even companies whose

sole job is to carry out software testing [3].The process starts

from the moment the test analyst starts evaluating test

requirements up to the time a fully debugged test script is

written and executed at least once. Test effort often means

money because the time spent in testing must be paid for by the

company this is why it is important to be able to calculate test

effort either before testing or after testing.

Before executing test cases, the test plan and strategy to be

adopted should have been finalized into the test specification.

Also required in order to execute test cases is the test case

specification which is “a document specifying a set of test cases

(objective, inputs, test actions, expected results, and execution

preconditions) for a test item” [2].

Classical estimation models are established based on linear or

non-linear regression analysis, which incorporate fixed input

factors and fixed outputs. The size of the project determining

the scope is modeled as a main input of such models [6], [5].

One representative of such models is COCOMO [7], [8]. The

most critical problem in such an approach is the wealth of data

that is needed to get regression parameters, which is often

impossible to get in needed quantities. It really limits their

usage for project estimation. In recent years, a flexible and

competitive method, Bayesian Belief Network (BBN), has

been proposed for software project estimation [9], [10], and

[11].

2. COST ESTIMATION TECHNIQUES

Software cost estimation methods are grouped into two

methods according to my research. These are the algorithmic

and the non-algorithmic methods. The algorithmic models are

based on the use of mathematical rules/algorithms such as

statistical means, standard deviation, regression, differential

equations etc., to calculate cost. Accuracy of these models are

quiet mixed and cannot be used as off-the-shelf [13]. The non-

algorithmic are non-mathematical in nature and rely upon

human judgments based upon professional experience,

previous similar projects, resources available and other forms

and means for the estimation [12][13][14].

2.1 Price-to-win

The software development effort is estimated based on the best

price to win the project. This means the cheapest i.e. what the

customer can afford. For instance, if the cost is estimated

reasonably to be 80 persons / month but the customer can only

afford 50 person/ month, the estimation will be modified to fit

only 50 persons /month. This is also not a good software

engineering practice. This can lead to low quality system and

the developers can be forced to work overtime among others

[13] [15].

2.2 Bottom-Up

In this method, estimation must start from the grassroots or

bottom units such as components with all the tasks and

functionality breakdown done and the summation of all the

efforts and schedules will be the total estimation for the project.

This method requires a detailed knowledge of software

engineering principles and architecture. This method is also

labor intensive but it captures the entire scope of work needed

and provides a better assurance than all other methods. A

requirement for this system is that an initial design must be in

place showing the breakdown of the system [12] [13] [15].

2.3 Top-Down

This is the opposite of the bottom-up approach. System level

activities are broken down into various components or units. It

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 6, Issue 7, July (2016)

ISSN: 2395-5317 ©EverScience Publications 40

starts from the overall system’s global properties and using

algorithmic or non-algorithmic methods to derive cost or

schedule estimates, this estimate is then shared among the

different sub-levels such as components and other units. This

method does not require knowledge of software architectural

design and it is more suitable for cost and schedule estimate at

the initial level of estimation of the project. However, the

detailed-level activities can be under-estimated under this

method [13] [15].

3. SOFTWARE SIZE ESTIMATION

The software size may be the one factor that affects the

software cost the most [13] and invariably test effort. This is

why we must estimate software size correctly and not too low

in order to avoid cost and schedule overruns.To size software,

we need to employ a variety of software sizing techniques and

not to rely only on one method in order to avoid budget

schedule risks from too low size estimates. According to

experts, software size can be determined from the following:

1. The number of functional requirements in both the

requirement specification and the interface specification.

2. The number of software units as contained in the software

design description.

3. The source lines of codes SLOC or the function point

estimates.

Software size should be measured, tracked and controlled

throughout the development of the software so that estimates

can be compared to the actual size and to determine trends and

progress [12].

Furthermore, it is very important to estimate software size early

in the software development lifecycle so that early significant

deviations can be detected. These deviations can be as a result

of the following problems:

1. Error in the model or logic used for in the development

of the estimates

2. Error in the requirement design, coding, process etc.

3. Unrealistic or wrongly interpreted requirements and

resource estimates used for the development of the

software.

4. Error in the development rate estimation Perhaps most

importantly, size based estimation should be compared to

existing similar project’s size, scope and complexity.

4. NEW APPROACH

A new frame work is introduced for measuring software testing

process. This framework has combined different metrics of

testing projects and derived a new metric which covers

different testing aspects. Different metric used in this new

approach for reducing testing efforts are: Efficiency, Mean

time to Failure, Failure Rate, Error Coverage and Defect

Density.

Working of the Model – Data for several project or system is

collected from various sources over the internet to perform

testing on it. At first the test cases are generated and then proper

planning is done for each test case. Then the further steps will

be taken to have different measures for same project.

5. PROPOSED MODEL

Figure 1: Proposed Model

6. TEST CASES

Test

Case

ID

Time No. of

Errors

Program

Size

Corrected

Error

Customer

Side

Errors

01 12 3 85 1 4

02 10 2 49 2 6

03 16 5 73 3 5

04 20 1 96 1 3

Table 1: Test Cases

7. CALCULATIONS

MTBF = (Time / No. of Errors) * 100

Failure Rate = (No. of Errors / Time) * 100

Error Coverage = (No. of Corrected Errors / No. of Errors) *

100

Defect Density = (No. of Errors / Program Size) * 100

Efficiency = (No. of Errors / (No. of Errors + Customer Side

Errors)) * 100

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 6, Issue 7, July (2016)

ISSN: 2395-5317 ©EverScience Publications 41

8. RESULTS

9. CONCLUSION

The model that I have described here is not rigid in nature. I

have used few metrics that will be helpful in reducing testing

effort. Number of more metrics can also be used that will

helpful in reducing testing effort. So it’s all up to the user

he/she can add or remove metrics from model as per

requirements. Thus number of more cases can be produces with

different implementation of my proposed model which can be

consider under future work under my research work

REFERENCES

[1] F. Elberzhager, A. Rosbach, J. Münch and R. Eschbach, "Reducing test

effort: A systematic mapping study on existing approaches," Information
and Software Technology 54, p. 1092–1106, 2012.

[2] Erik Erik Van Veenendaal, (2002), the Testing Practitioner, UTN

Publishers, the Netherlands.
[3] http://www.effortestimator.com/Test%20Effort%20Estimation.pdf (last

visited 2011-08-11)

[4] http://promisedata.org/pdf/phil2006AranhaBorba.pdf (last visited-2011-
07-31)

[5] Chen Qingzhang, Fang Shuojin, Wang Wenfu, ”Development of the

Decision Support System for Software Project Cost Estimation”, World
Congress on Software Engineering,IEEE, 2009.

[6] Yinhuan Zheng, Yilong Zheng, Beizhan Wang, Liang Shi, ”Esti- mation

of software projects effort based on function point”, 4th International
Conference on Computer Science and Education, 2009.

[7] Jin Yongqin, Li Jun, Lin Jianming, Chen Qingzhang, ”Software Project

Cost Estimation Based On Groupware”, World Congress on Software
Engineering, IEEE, 2009.

[8] Pichai Jodpimai, Peraphon Sophatsathit, and Chidchanok Lursin- sap,

”Analysis of Effort Estimation based on Software Project Models”, IEEE,

2009.

[9] Hao Wang, Fei Peng, Chao Zhang, Andrej Pietschker, ”Software Project

Level Estimation Model Framework based on Bayesian Belief
Networks”, Sixth International Conference on Quality Software

(QSIC’06), IEEE, 2006.
[10] angyang Yu, Charlottesville, ”A BBN Approach to Certifying the

Reliability of COTS Software Systems”, annual reliability and

maintainability symposium, IEEE, 2003.
[11] Ying Wang, Michael Smith, ”Release Date Prediction for

Telecommunication Software Using Bayesian Belief Networks”, E

Canadian Conference on Electrical and Computer Engineering, IEEE,
2002.

[12] http://www.stsc.hill.af.mil/resources/tech_docs/gsam3/chap13.pdf (last

visited 2011-07-30)
[13] ftp://cs.pitt.edu/chang/handbook/42b.pdf (last visited 2011-08-11)

[14] http://www.bth.se/fou/cuppsats.nsf/all/1ce4270c92a2ca97c1257547004

5b588/$file /DV2403_Master_Thesis_Sohaib_Shahid_Bajwa.pdf (Last
visited 2011-08-11)

[15] ranger.uta.edu/~khalili/Somerville%20Chapter%2026.ppt (Last visited

2010-04-10)

